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Abstract
Despitesomesuccesses,the lack of tools to allow subject
matterexpertsto directly enter, query, anddebug formal do-
main knowledgein a knowledge-basestill remainsa major
obstacleto their deployment. Our goal is to createsuch
tools, so that a trainedknowledgeengineeris no longerre-
quired to mediatethe interaction. This paperpresentsour
work on theknowledgeentrypartof this overall knowledge
capturetask, which is basedon several claims: that users
can constructrepresentationsby connectingpre-fabricated,
representationalcomponents,rather than writing low-level
axioms;that thesecomponentscanbe presentedto usersas
graphs;andthe usercanthenperformcompositionthrough
graphmanipulationoperations. To operationalizethis, we
have developeda novel techniqueof graphicaldialog using
examplesof the componentconcepts,followed by an auto-
matedprocessfor generalizingtheuser’sgraphically-entered
assertionsinto axioms. We presenttheseclaims, our ap-
proach,the system(calledSHAKEN) that we aredevelop-
ing, andanevaluationof ourprogressbasedon having users
encodeknowledgeusingthesystem.
Keywords
Graphicalknowledgeentry, knowledgeacquisition,compo-
nents,composition,knowledge-basedsystems.

INTRODUCTION
Despitesomesuccesses,the lack of tools to allow subject
matterexpertsto directly enter, query, anddebug formal do-
main knowledgein a knowledge-base(KB) still remainsa
major obstacleto their deployment. Our goal is to create
suchtools,sothata trainedknowledgeengineeris no longer
requiredto mediatethe interaction.This paperpresentsour
work on theknowledgeentrypartof this overall knowledge
capturetask. In particular, we presenta novel technique
of graphicaldialog usingexamplesof componentconcepts,
andan evaluationof this technique.The particularapplica-
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tion domainwe areworking with is cell biology (although
our techniquesarenot specificto this domain),andour fo-
cus hasbeenon capturingdomainknowledge,as opposed
to problem-solvingknowledge(the “what” rather than the
“how to” knowledge).This work is beingconductedaspart
of DARPA’sRapidKnowledgeFormation(RKF) project[8].

CONTEXT, GOALS, AND CLAIMS
Context of the Work
Component-basedapproachesfor knowledgecapturearecur-
rently popular, andso we first describewhereour work fits
in this context. It is useful to view expertiseas compris-
ing problem-solvingknowledge(“how” knowledge)anddo-
mainknowledge(“what” knowledge).Perhapsthemostsuc-
cessfulcomponent-based,knowledgecapturework hasbeen
with problem-solvingknowledge,wherereusableproblem-
solvingmethods(PSMs)canbeassembledto producetask-
specificproblem-solvers,e.g.,[4, 18]. Moreover, PSMscan
also be usedto guide acquisitionof domainfacts,as they
“expect”certaintypesof knowledgein orderto operate,e.g.,
theExpectsystem[2], Protege-derivedtools[13].

Lesswork hasbeendevotedto captureof domainknowledge,
andit is captureof thiskind of knowledgethatis theprimary
focusof our work. Existingtoolshave focussedonly on en-
try of taxonomic(“isa”) knowledgeanddatabase-stylefacts,
e.g.,WebOnto[9], or have beentargetedfor useby knowl-
edgeengineersratherthansubjectmatterexperts,requiring
logical axiomsto be directly entered,e.g.,Ontolingua[10],
GKB [15], andthe HITS KnowledgeEditor [17]. Our goal
is to allow usersto encodethesemorecomplex, declarative
axioms,describingbothstaticobjectsanddynamicprocesses
in theworld, without requiringexpertisein logic or AI. Our
approachis analagousto work on PSMs: We similarly as-
sumea library of components(but aboutobjectsand pro-
cessesin theworld, ratherthanaboutproblem-solvingstrate-
gies); and componentssimilarly provide “expectations”to
guidetheuser(but abouthow domainknowledgeshouldbe
represented).Theresultof theknowledgecaptureprocessis
a new setof axiomsabouta domain-specificobjector pro-
cess,whichcanthenbeusedfor question-answering.

Concerningouruseof graphsfor interactingwith users,graph-



ical notationshave frequentlybeenfound to be intuitive to
users,� e.g.,in “conceptmaps,” aninformalgraphicalnotation
developedfor educationalsettings,andusedin toolssuchas
WebMap[12] andby Univ. WestFlorida[3]. Similarly they
havesometimesbeenfoundintuitiveto knowledgeengineers
themselves,e.g.,[16, 11]. Ourgoalis to exploit thisintuitive-
nessfor working with a pre-built library of representational
components.

Claims

A centralclaim of our approachis that userscanconstruct
axiomaticrepresentationsby connectingpre-fabricated,rep-
resentationalcomponents,ratherthanwriting low-level ax-
ioms directly. By component,we meana coherentset of
axiomswhich describesomeabstractphenomenon(e.g. the
conceptof “invade”), andwhich arepresentedto the users
asa singlerepresentationalunit. By composition,we mean
the connectionof suchcomponentstogether, and the com-
putationof additional implicationsof the compositeset of
axioms. Componentsareintendedto encodefairly abstract
phenomena,suchasknowledgeabouttheconcepts“invade,”
“break,” “container,” and“control system.” Our goal is thus
to recastthe knowledgecaptureprocessasoneof instantia-
tion andassembly, ratherthanof axiomwriting.

A second,relatedclaim of our work is thatcomponentscan
bepresentedto usersasgraphs,andtheusercanthenperform
compositionthroughgraphmanipulationoperations. As a
result,detailsof theunderlyinglogic arehiddenfrom users.
Two implementationchallengesfor this arefirst expressing
componentsasgraphs,andsecondtranslatingtheuser’sgraph
manipulationoperationsbackinto logic, so that asthe user
manipulatesgraphs,thesystemrecordsthelogicalequivalent
of thoseoperations.Ournovel solutionto thischallengeis to
havethedialogwith theusersbein termsof examplesof their
conceptsof interest,coupledwith a processfor generalizing
theuser’sgraphically-enteredassertions.

Thesetwo claims are related. In particular, the claim that
knowledgecapturecanbe treatedprimarily asan assembly
processsuggeststhat just a small numberof axiom types
(for statingconnectionsandinstantiationsof existing com-
ponents)will be sufficient to allow the usersto build ade-
quaterepresentations.Although any full axiomatizationof
the user’s conceptsof interestmay requirecomplex axioms
aboutspace,time, actions,movement,etc., thesewill have
beenpre-built in the KB, and the user’s job is thussimpli-
fiedto describingdomain-specificconceptsusingthem.This
providesa basisfor thedesignof thegraphicalinterface,as
it only needsto supportentryof this restrictedsetof axiom
types,ratherthanthe full rangeof possiblefirst-orderlogic
expressions.To theextentthattheseclaimshold,a parsimo-
nioustool for knowledgecapturecanbeconstructed,andto
theextentthatthey do not,specialadd-onswill beneededto
accomodatetheuser’sneeds.

TECHNICAL APPROACH
Theuser’s goal is to create/extenda representationof a con-
cept,i.e.,encodeaxiomsdescribingtheproperties,structure,
andbehavior of somedomain-specificobjector process.The
user’sactivitiesareto: (1) Identify relevantcomponentsfrom
theprebuilt KB; (2) connectandextendthemto build a new
representation;(3) save theresult;and(4) testandaskques-
tions aboutthe new concept.The focusof this paperis on
step2 above,theconstructionof new representations.

Components
A componentis a small set of first-order logic (FOL) ax-
ioms abouta particularconcept,gatheredinto a singledata
structure,encodingacoherentdescriptionof thatconcept[5].
Theuseris providedwith a pre-built library of suchcompo-
nentsto work with. (Creatingthis library is aseparate,major
goalof our project[1]). For example,considera (muchsim-
plified) componentdescribingthe processof “Invasion”. It
might includeaxiomsstatingthat:� Thedefendingobjecthassomebarrierto protectit� During an invasion,the invaderpenetratesthat defensive

barrier, thenentersthroughit, thentakescontrolof theat-
tackedobject.� Theinvadingagentis a tangibleentity� etc.

Statementssuchof theseareencodedin first-orderlogic in
the KB using (in our case)the frame-basedlanguageKM
[6]. A simplifiedexampleof this notionof invadelooks(in
KM notation,with examplesof equivalentFOL notationas
footnotes)

�
:

;;; [1] “The invadingagentis a tangibleentity”
;;; [2] “The subeventsof aninvasionarea penetrate,
;;; anenter, anda take control.”
;;; [3] “During thepenetrate,theinvaderpenetrates
;;; thedefensive barrierof theattackedobject.”
;;; [4] “The first subevent is a penetrateevent”
;;; etc.
(Invade has (superclasses (Attack)))
(every Invade has
(agent ((a Tangible-Entity))) ;[1]
(object ((a Tangible-Entity with

(has-part ((a Barrier))))))
(subevent (

(a Penetrate with ;[2a]
(agent ((the agent of Self))) ;[3a]
(object ((the Barrier has-part of ;[3b]

(the object of Self))))
(next-event ((the Enter subevent

of Self))))
(a Enter with ;[2b]
(agent ((the agent of Self)))
(object ((the object of Self)))
(next-event (
(the TakeControl subevent of Self))))

(a TakeControl with ;[2c]�
Briefly onKM’ ssyntax:slots(lowercase)arebinarypredicates,classes

(mixedcase)aresorts/types,‘every’ denotesuniversalquantificationand
‘a’ denotesexistentialquantification.See[6] for furtherdetails.



(agent ((the agent of Self)))
(object ((the object of Self))))))

(first-subevent (
(the Penetrate subevent of Self)))) ;[4]

Or in standardFOL syntax:
[1]

�������
	��
����������	����������� ���!	��
�"��#$	���%��'&�(
�
-) ��*��+*,����-.	�%��/��*0�
���'���

[2a,3]
���1���
	��
����������	���������2��34�
56&������/��*0�
����36�"-.���
	��
3��+78�����/*,9�	�*,�:��-�
��	;	:%��/��*0�
���+	"���<	:%��/��*0�
31�+	��!��-�
��=��'&>=�&�?@�/A�*��
���,	���-CBD	"�

-
3E	�9�*0�
=��+&F�G-���
	��
&���H.	�9D9��+��9����<=�&�?@�/A�*0�
3���&F�!�G�

etc.
Theseaxiomsprovide onefairly generalmodelof invasion
for theuserto startfrom, anduseconceptswhich themselves
alreadyhave rich semanticsin theKB. For example,axioms
aboutthe conceptof Enter (not shown here)encodethat
if somethingis entered,thentheenteringobjectwill bespa-
tially insideafterwards,thatthepathof entrywill necessarily
crossthe boundaryof the enteredthing, etc. The KB uses
a rich languagefor describingthe propertiesandeffectsof
actions,allowing questionsto beansweredthroughbothde-
ductivereasoningandrunningsimulations.

Displaying Axioms to the User
To presenttheaxiomsabouta conceptI to theuser, theraw
axiomsarenot presenteddirectly. Rather, the userseesan
exampleJ of that concept,i.e., a setof groundfactsabout
J , computedfrom thoseaxioms.Groundfactsarebothcom-
prehensibleandgraphable,andprovideaneasy-to-grasp(al-
thoughapproximate)summaryof what theKB “hasto say”
aboutaconcept.Theuserthenbuildsnew conceptsby inter-
actingwith this andotherexamples.

For instance,supposetheuseris wantingto build arepresen-
tation of how a virus invadesa cell. Onestartingpoint for
this is thepre-built conceptof J�KMLON6P�Q , which theuserwould
locateby browsing the componentlibrary. To thendisplay
theaxiomsfor invade,oursystemSHAKEN then:

1. createsaninstanceJ of J�KMLON6P�Q (i.e., assertstheexistence
of anindividualof type J�KMLON6P�Q ), then

2. queriestheKB for valuesfor eachof J ’sslots(i.e.,usesin-
ferenceto computeall groundfactsof theform RES�T�UFV I W!XZY ).
ExistentiallyquantifiedvariablesareSkolemized,andthus
the resultof this is typically a setof ground,binary facts
betweenSkolemindividuals.An exampleis shownshortly.

3. Recursively appliesstep2 to eachsuchvalue X found,up
to acertaindepthlimit.

4. Presentsthisdatabaseof groundfactsto theuserasagraph,
whereeachSkoleminstanceis anode,andeachbinaryre-
lation is anarc. Nodesarelabelledwith themostspecific
class(es)(i.e.,sort,type)thateachinstancebelongsto.

Theboundariesof thisprocedure,andhencetheextentof the
resultinggraph,aresetmanuallyby us, the knowledgeen-
gineers,by pre-specifyingwhich slotsshouldbeincludedin
the graph,andthe depthof recursion.An autolayoutalgo-
rithm thendeterminesthe spatiallayout of nodesandarcs.

The graphsarecomputeddynamicallyby this procedureat
run-time, and thus can automaticallyadaptas new axioms
are addedto the system. From here, the usercan modify
the initial presentationby moving, expanding,or contract-
ing nodesin thegraph,hidingor exposingedges,andsaving
his/herrevisedpresentationsonew usesof thatconceptwill
appearthesameway.

Applying this procedureto our (simplified) J�KMLMN6P�Q repre-
sentation,SHAKEN would first generatea Skolem instance
denotinganexampleof invade,e.g.,namedJ�KMLMN�P�Q�[ (terms
endingwith numbersdenoteSkolem constants),andhence
thesetof facts:

agent(Invade1,Tangible-Entity2)
object(Invade1,Tangible-Entity3)
has-part(Tangible-Entity3,Barrier4)
first-subevent(Invade1,Penetrate5)
subevent(Invade1,Penetrate5)
agent(Penetrate5,Tangible-Entity2)
object(Penetrate5,Barrier4)
next-event(Penetrate5,Enter6)
subevent(Invade1,Enter6)
agent(Enter6,Tangible-Entity2)
object(Enter6,Tangible-Entity3)
next-event(Enter6,TakeControl7)
subevent(Invade1,TakeControl7)
agent(TakeControl7, Tangible-Entity2)
object(TakeControl7, Tangible-Entity3)

Fromthis,agraphwouldbesynthesizedanddisplayed,where
eachnodecorrespondsto a Skolem instanceandeacharc a
binaryrelation.Theresultinggraphmaylook, for example:

Entity

Entity
Barrier

Penetrate Enter TakeControl
next−
event

next−
event

agent

object

has−part

agent

subevent agent

object

first
event

object

Invade

Entering Knowledge by Interacting with the Graph
Supposethattheuserwishesto build arepresentationof how
a virus invadesa cell. He/shewould first provide a namefor
thisnew concept(e.g., \8]
^E_`R�J�KMLON6R�]/T�K ), andthenlocateone
or morecomponentsin theKB to startfrom. In thisexample,
theusermayselectthe J�KMLON6P�Q conceptshown earlier. As a
result,SHAKEN generatestheabovedatabase,andalsoadds
the assertionthat the root instancedenotes(an exampleof)
theuser’snew concept,i.e.,asserts:

]@REN�VaJ�KMLMN�P�Q�[�WD\b]
^F_ZR�J�KMLMN6R�]@T�K;Y
As a result, the label on this root nodeappearsas “Virus-
Invasion,” and would appearas shown in the top graphin
Figure1. Theentiregraphis treatedasa “representative in-
stance”of theuser’snew concept.



To developa modelof how (for example)a virus invadesa
cell usingc this andothercomponents,the userneedsto en-
codefactssuchas:
A1. theinvadingagentis a virus
A2. theinvadedobjectis acell
A3. thepenetrateis by meansof endocytosis
A4. the agentin the endocytosisis the invadedobject (i.e.,

thecell)
A5. thereis alsoa delivery(of DNA) takingplace
A6. there are certain correspondencesbetweenthe invade

andthedeliverye.g.,
A6.1 the invader(i.e., the virus) is the sameas the

agentin thedelivery
A6.2 thethingdeliveredis theDNA of thatvirus.

Ratherthanwriting thesestatementsin logic, theusermakes
themthroughthegraphicalinterfacevia graphmanipulation
operations.Thisispossiblebecausetheseaxioms(specifying
thecomposition)aregenerallyall of asimpleform: thecom-
plex axiomsaboutvirus invadinga cell, e.g.,how thespatial
relationshipsof the objectschangeduring the process,are
mainly applicationsof moregeneralaxiomswhich already
residein more generalcomponents,and thus have already
beenpre-encodedin the componentlibrary. The user’s job
(and thus the interface)is thussimplified to using just this
restrictedsubsetof axiomtypes.As statedearlier, this is an
importantclaim of our work, namelythat by pre-encoding
componentswell, a setof simple typesof connectionsbe-
tweenthemwill be adequatefor KB constructionby a user
who is not a trainedknowledgeengineer.

SHAKEN currently supportsfour typesof axiom-building
graphoperations(plusothersfor controllinglayoutandnode
visibility). Eachgraphicaloperationcorrespondsto asimple,
groundassertionabouttheexamplehe/sheisworkingon,and
eachtime the userperformsan operation,SHAKEN makes
the correspondinglogical assertionin the KB. On comple-
tion, analgorithmgeneralizestheseassertionsto hold for all
instancesof the concept I the user is describing,and the
resultingaxiomsetcapturestheknowledgetheuserhasen-
tered.If theuseris happy with his/herwork, theaxiomsetis
addedto theKB, andcanbefurtherrefinedlaterand/orused
itself asacomponentfor definingnew concepts.

The four graphicaloperationsand their correspondingax-
ioms arelisted in Table1 andillustratedin Figure1. They
areasfollows:
Specialize: Refinean object’s most specificclass(es). In

Figure1, theuserhasclickedon thefirst dbKMU!]
U!e node
andthenselectedIfQES'S from a menu,to statethat the
thingbeinginvadedis acell. Thisassertsisa(Tangible-
Entity3,Cell)in theKB.

Add: Add a new participantto the representation.In Fig-
ure1, theuserhasselectedthegraphfor \g]
^F_ZR . This
assertshFXf]/REN�VaX`W�\8]
^E_ZR�Y , whichis thenSkolemizedto
]@REN�V!\8],^E_ZR0i�W�\8],^E_ZR�Y andassertedin theKB.

Unify: Statethat two objectsarecoreferential.In Figure1,
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next−
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Figure 1: Examples of the four axiom-asserting graphical
operations that the user can use in SHAKEN.



Operation Examples Graphical Action Graphical Result Logical Assertion
specialize A1, A2 click nodeJ + selectclass J ’s labelchangesto IfS'N6RER ]/REN�VaJMW�IfS�N�RER�Y
add A3, A5 click button+ selectclass graphfor classappears h�Qj]@REN�V!QEWDIfS'N6RER�Y
unify A4, A6.1, A6.2 dragnodeJ ontonodeJ6k nodesfuse JmlnJ1k
connect A3, A4 sketcharc o betweenJ , J6k arcappears opV
JOW2J6k!Y

Table 1: The four graphical operations in SHAKEN, and their logical equivalent. The examples refer to the axioms
listed in the body of this paper.

theuserhasstatedthat the invaderis thesameobject
as the virus he/shejust introduced,by draggingone
on top of the other (which then fuse). This asserts
Tangible-Entity2=Virus8.

Connect: Assert a relation holds betweentwo nodes,by
sketchinganarc. In Figure1, theuser’s actionresults
in N�qMQ�KMUFV!dbKMU�Q�^�r�WD\b]
^E_`R0iGY beingasserted.

Implications of the User’s Assertions
The user’s assertionsmay have logical implications in the
KB, andhencemay imply changesto the graphthe useris
viewing. For example, if the userhastwo graphsfor two
distinctvirusesdisplayed(similar to the \g]
^F_ZR graphin Fig-
ure 1), andhe/shethenunifiesthe two viruses,this implies
(from constraintsin the KB) that the two DNA nodesmust
alsobecoreferential,andsoshouldalsobeunified. To feed
thesechangesbackto theuser, first these“knock on” effects
arecomputedin theKB, andthenthegraphstheuseris view-
ing arerecomputedandredisplayed(preservingasmuchof
theoriginal spatiallayoutaspossible).

ThusSHAKEN is not just a passive grapheditor, but is ac-
tively engagedin showing the userconsequencesof his/her
assertionswhen they affect the visible graphs. This is an
importantanddistinctive propertyof our interface,andnec-
essaryto keepthe graphsandthe KB synchronizedso that
thedialogremainscoherent.

Axiom Synthesis from Graph Operations
Throughthe above means,the usercan only enterground
factsaboutthis particularexampleof his/hernew concept.
Thefinal stageof this knowledgeentryphase(beforetesting
anddebugging)is the automaticgeneralizationof thoseas-
sertionsto hold for all instancesof the user’s new concept.
Thisgeneralizationprocessis algorithmic(ratherthaninduc-
tive),which we now describe.

The axiomswhich the userhasgraphicallyenteredare all
relationshipseitherbetweenSkoleminstances,or betweena
Skolem instanceanda class. For example,the userwould
enterthe earlierassertionA2 that “the invadedobjectis the
cell” by a ‘specialize’ graphicaloperationon the nodede-
noting the invadedobject,namelyTangible-Entity3. This is
illustratedin thefirst stepof Figure1, andresultsin thecor-
respondinglogicalassertionbeingaddedto theKB:

]/REN�VastNDKMq�]@u�S'Q - d8KMU!],U!e�v"W�IfQES'S
Y

To generalizethis to apply to all instancesof theuser’s new
concept\8]
^E_`R�J�KMLON6R�]/T�K , thealgorithmbehavesasfollows:

1. First, the axiom is rephrasedto only mentionthe “root”
Skolem instanceo , namelythe onedenotingthe concept
theuseris defining. In our examplehere,theroot Skolem
o is Invade1, denotingthe user’s exampleof VirusInva-
sion. Informally, this meansa statementlike

“Tangible-Entity3is aCell”

is rephrasedas

“the objectof Invade1is a Cell”

Note that the latter statementonly mentionsthe root in-
stanceJ�KMLMN�P�Q�[ . This is requiredfor step2.

Formally, eachSkolem instanceJ in thegroundassertion
is replacedwith a variable L , and a formula is addedas
an antecedentwhich uniquely identifies L asthat Skolem
instanceJ , andno other. In otherwords,this formula is a
descriptionof J , statingtheuniqueway it is relatedto the
root o , i.e. is true only when Lwl<J . In SHAKEN, this
formulais apath(rolechain)of relationshipsfrom theroot
instanceo to J , foundby asimplegraphsearchprocedure
startingat o and looking for path(s)to J . The resulting
formulahastheform:x � V!oyW!X � YMz x6{ VaX � W2X { YOz}|~|a|�z x1� V
X ��� � W2L�Y
andthustherephasedaxiomhastheform:� X � WD|~|a|~W2L x � V2oyW!X � YMz}|~|a| x1� VaX ��� � W!L>Y`��NDX�]/T���VaL>Y
In theaboveexample,thegroundfact

]/REN1V
stNDKMq�]/u/S�Q - dbKMU!]
U!e�v�WDIfQES'S�Y
would thusberephasedas� L�T�u
��QE�
UFVaJ�KMLMN�P�Q�[�W2L�Yj��]/REN�VaLMW�IfQES'S
Y
If thereare multiple suchobjects,then additionalpredi-
catesareaddedto theformulauntil it only holdsfor J (here
Tangible-Entity3).

2. This axiom is thengeneralizedso that it holdsfor all ex-
amplesof theconcept��Q��tI beingdefined.This is done
by replacingtheroot instanceo in theaxiomwith a vari-
able ^ , andaddingan antecedentstatingthe axiom holds
for all caseswhen ^ is an instanceof ��Q��tI , i.e., when
]@REN�Va^:WD��Q��tI�Y is true. Thefinal axiomwill thushave the
form:



� ^g]/REN1V
^:W���Q��tI�Y`���MT�^F�}_ZS'N�Va^"Y
where �MT�^E��_ZS'N�V
^�Y is the axiom from step1 with o re-
placedby ^ . In theexample,thefinal resultwould be:

;;; “The invadedobjectis thecell.”� ^g]/REN1V
^:W�\b]
^E_ZR�J�KMLMN�R�]/T�K;Y`�
V � L�T�u
��QE�
UFV
^:W!L>Y`��]/RFN�V
LOWDIfQFS�S,Y�Y

It shouldbeclearthatthepurposeof step1, rewriting in terms
of o , is to pave theway for step2, where o is replacedby a
universallyquantifiedvariable.

Onecomplicationmustbedealtwith for the‘Add’ operation.
Whentheuseraddsa new componentto thescreenthrough
the‘Add’ operation,it is initially disconnectedfrom theroot
graphdescribingthe user’s new concept. This meansthat
thereis nopathconnectingtheroot instanceo to instancesin
thatnew graph,andthusthereformulationin step1 will fail.
To handlethis,a (graphicallyinvisible)“participant”relation
is assertedto hold betweeno and the new instancewhose
existencehasbeendeclared,statingthat thenew instanceis
a “participant” in o . As a result,theprocedurein step1 can
now findapathfrom o to thatinstanceandothersin its graph
by traversingthatparticipantrelation.For example,in graph
3 of Figure1, theuserhasaddedthegraphfor \8]
^E_`R , sothe
assertionis addedto theKB:x N�^EU!]/�
] x NDKMUFV
J�KMLMN6P�Q�[�WD\b]
^E_`R0iGY
Thisallowspathsto instancesin thenew graphto befound.

Axiom Synthesis with ‘Delete’ Operations
An undesirablecharacteristicof this axiom synthesisrou-
tine is thatit assumesa monotonicallygrowing KB. As each
axiom includeslogical descriptionsof the objectsthe user
manipulated,generatedat a fixed momentin time, the user
cannotlaterdeletefactsaboutthoseobjectswithout risking
invalidatingthosedescriptions,andhencehis/herearliersyn-
thesizedaxioms. In the earlier example, if the userwere
to laterdeletetheassertionobject(Invade1,Tangible-Entity3),
thenthesynthesizedaxiomshown wouldno longerbevalid.

We have recentlyprototyped(but not deployed)an alterna-
tive, andvery different,axiomsynthesisroutinewhich sup-
ports non-monotonicchange,thus providing the userwith
a much desired‘Delete’ (of a nodeor arc) operation,and
which we briefly describehere.Ratherthanconvertingeach
useractioninto anaxiom,thisalternativeapproachstoresthe
user’s final graph itself asa (large) “forall...exists...” axiom
statingthat“forall instancesof theconceptbeingdefined,all
theobjectsandrelationshipsin thegraphexist.” This axiom
is createdonly attheendof theuser’ssession,andoverwrites
any previousaxiomfor thatconcept,thusallowing theuserto
deleteaswell asaddto thegraph.To supportthis,two exten-
sionswereneededfor the inferenceengine:First, theuser’s
deleteoperationsmustoverrideimplicationsfrom theKB, to
preventSHAKEN re-inferringthedeletedarc/node.Second,
wheninferencingwith several “forall...exists...” statements

Figure 2: A screendump of SHAKEN’s graph interface,
showing a user’s representation of how the process of
RNA transcription is initiated.

like this, the inferenceengineneedsto heuristicallydeter-
mine coreferencesbetweeninstancesin the (logical equiv-
alentof) the multiple graphs,so that they areappropriately
mergedtogether. Although theseextensionscomplicatethe
formal semanticsof axioms in the KB, they will provide
userswith a much-desired‘Delete’ capability in later ver-
sionsof the system. It hasbecomeincreasinglyclear from
our experimentsthatassumingsimpleaxiom semanticsand
a monotonicallygrowing KB aredifficult positionsto main-
tain for real-world knowledgeacquisition.

Entering Knowledge through the Interface
Throughtheseoperations,theuser’staskis to assemblearep-
resentationof new concepts.Theuserfirst providesa name
for his/hernew concept,thenselectsfrom the KB the most
appropriate,pre-built generalizationof that conceptto start
from. SHAKEN thendisplaysthe initial graphfor (an in-
stanceof) thatnew concept.From here,theuseradds,spe-
cializes,connects,andunifiesnodeson thescreento gradu-
ally build arepresentation.An exampleof oneof thesimpler
representationsbuilt by a userduringtheexperimentaleval-
uationis shown in Figure2. Separatetestingandquestion-
answeringtools [14, 7] allow the usersto debug and pose
questionsto their representationsuntil they aresatisfied.

EVALUATION AND DISCUSSION
Duringthesummerof 2001,anextensiveevaluationwasper-
formedon SHAKEN, including the graphicalentrycompo-
nentdescribedin this paper. Four userswho were trained
in biology (threegraduatestudents,oneundergraduate),and
whohadnobackgroundin programmingor formal logic, un-
derwenta week’s training in using the system. Following
this, they then independentlyworked over a periodof four
weeks(exceptfor onewhoworkedfor threeweeksdueto va-
cationconstraints)on encodingan11-pagesubsectionfrom
a graduate-level textbook on cell biology, including debug-
gingandtestingtheirrepresentations.Thesetrialswasrunby



an independentcontractor(IET, Inc.), ratherthanourselves.
For the

�
trials, the basiccomponentlibrary was augmented

with representationsof theprerequisiteknowledgeneededto
understandthesubsection.This augmentationwascarefully
controlledby IET to preventknowledgefrom thesubsection
itself beingincludedin theinitial library.

Most significantly, all four userswere able to both grasp
thebasicapproachof assemblingcomponents,andconstruct
representationsusingthe graphicalinterface. Over the four
weekperiod(threefor oneuser),the usersconstructedrep-
resentationsof 442 biological concepts(approximately100
each)rangingin complexity from a singlenode(i.e., just a
conceptname)to graphscontainingover 100 nodes. The
total numberof synthesizedaxiomsin the users’final rep-
resentations(whereeachaxiom-building graphicalactionre-
sultsin oneaxiombeingsynthesized)were1408,567,1296,
and921respectively. Theusersalsotestedtheir representa-
tionsby posing(independentlyset)questionsto themusinga
menu-drivenquestion-askinginterface. The questionswere
approximatelyhigh-schoollevel difficulty, andweremainly
“readingcomprehension”typequestionsrequiringonly sim-
ple inference,althougha few requiredmorecomplex infer-
enceand simulation. Sometimesthis testing revealeder-
rors or inadequaciesin the representations,which the users
would thencorrect. The final, system-generatedanswersto
thetestquestionswerecollected,and,afterthefour weekpe-
riod wascomplete,werescoredby anindependentbiologist
on a 0-3 scale(0 = completelyincorrect,1 = mostly incor-
rect, 2 = mostly correct,3 = completelycorrect). At time
of writing thefinal scoresarestill beingtallied,but theeval-
uatorsreport that the averagescoreis closeto 2, reflecting
that theusershadsuccessfullyconstructedreasonablyaccu-
rate,inference-capablerepresentations.Theseresultsaresig-
nificant: they suggestthat the basicmachineryworks, pro-
viding a basicvehiclefor axiom-building without the users
having to encodeaxiomsdirectly (or even encounterterms
like “concept,” “relation,” “instance,” “quantification,” etc.);
and that thoseaxiomsarebuilt in termsof prebuilt knowl-
edge,hencebringingbackgroundknowledgeinto the repre-
sentationsfor futurereasoningandquestion-answeringtasks.
This is an importantachievementfor this project. In a sep-
aratequestionnaireto the threeusersat the endof the four
weeks(the fourth user still to completethe questionnaire
whenbackfrom vacation),all threeratedSHAKEN as“use-
ful” asatool to enterknowledge(onascaleof useless/notso
useful/moderate/useful/very useful), and “easy” to use(on
a scaleof very easy/easy/moderate/difficult/very difficult).
Thisagainpointsto theviability of this approach.

Although the userswereableto encodea lot of knowledge
with SHAKEN, therewasalsoknowledgethey wereunable
to encodedueto thelimited expressivity of theinterface.The
mostsignificantof these,asreportedby theusers,were:� simple attribute values(which had to be representedas

classesin thecurrentsystem),e.g.,rates,sizes

� equationalinformatione.g.,how ratesvarywith time� temporalrelations,e.g.,simultaneous/temporallyoverlap-
ping events� pre/postconditionsfor actions� richerprocessmodels,e.g.,repetitiveevents� sequences,e.g.,nucleotidesequences� negative information, e.g., being able to say something
doesn’t happen� locational/spatialinformationb� how thingschangewith time(fluentinformation).Thesys-
temassumesthegraphdescribestheworld at thestartof a
process,andso,for example,it is not possibleto describe
whatanobjectlookslikeat theendof aprocess.

Similarly, comparingthe users’sourcetext with what they
actuallyencoded,it is clearthat they abstractedaway many
of thedetailscontainedin thetext. For example,thesource
text for theuser-built representationin Figure2 begins:

“In bacteria,RNA polymerasemoleculestend to stick
weakly to thebacterialDNA whenthey make a random
collision with it; the polymerasemoleculethen slides
rapidlyalongtheDNA...”

If we comparethis text with whatwasactuallyencoded(see
Figure 2) by one user, we can seethat eventslike “stick”
and “slide” have beenabstractedto Make-Contact and
Move-Through (whoserepresentationsarepre-built in the
library), and other phraseslike “weakly”, “rapidly”, “ran-
dom”, and“tend to” have beenomitted. (This userhasalso
addedanextraprerequisitestep,mentionedin text elsewhere,
of the sigmafactorattachingto the polymerase).In fact, to
oursurprise,theusersseemedto have little or no troubleab-
stractingout detailswhenbuilding their representations,and
they quickly graspedwhat could be representedand what
could not usingSHAKEN. In contrast,users(suchasour-
selves) with more experiencein knowledgerepresentation
sometimeshadmoredifficulty abstractingin this way when
attemptingthe sameencodingtask. Interestingly, despite
theselimitations,theusersthemselvesfelt they hadmanaged
to encodemuchof thecoreknowledge.After thetrials were
completed,they wereeachasked:“Next weekSHAKEN will
be asked questionsand answerthem using the knowledge
you entered,andbasedon that it will be givena grade.Do
you think it will be a passinggrade?”. All threeusersre-
pondedquiteconfidently, sayingthingslike “definitely” and
“oh yes”. When asked “What kind of grade?”,two users
answeredA-, the third saidB. Independentof whetherthis
perceptionis corrector not, it is interestingthat the users
themselvesfelt they hadbeenableto teachthesystemmuch
of thebiologicalknowledgein theselectedsubsection.

Another surpriseto us was the size of the representations
theuserscreated.Someof theusers’graphscontainedover
100nodesin, andwererich in relationshipsandassociations.
(Theuserscouldmanagegraphsthis sizeastheinterfaceal-
lows themto hide/exposepartsof thegraph,sonot all nodes



needbevisibleatonce).Thegraphshown in Figure2 is thus
not representati� ve of the typical complexity that the users
wereableto build. Thefacttheuserswereableto build such
sophisticatedrepresentationsperhapspartially explainstheir
confidencein theamountof knowledgeencoded.

Despitethe reasonableperformancescores,therewerestill
errorsin theusers’final representations.Someof thesearose
due to the useof linguistic-styledevices (e.g., metonymy,
analogy, metaphor, approximation)in their graphicalasser-
tions. Exampleswe observed include: indirect reference;
interchangeablyreferring to an object and an event; inter-
changeablyreferring to an object and a location; missing
coreferencestatements;overgenerality;missingcontext (stat-
ing a conditionalfact asa universalstatement);andmisuse
of caseroles.An importantfuturetaskis to makeSHAKEN
moreactive in interpretingandcritiquing theusers’input,so
theseerrorsaredetectedandcorrectedmoreagressively.

A final, interestingpoint concernsthe interactionbetween
representationandquestion-answering.SHAKEN assumesa
single,universalrepresentationfor eachbiological concept,
while sometimestheuserswantedto beableto representthe
sameconceptin multiple ways,dependingon what kind of
tasksthey wantedtheirrepresentationto support.Sometimes
thisresultedin theuserscreatingmultiplerepresentationsfor
the sameconcept(using slightly different conceptnames).
A moreprincipledmethodfor handlingdifferentviewpoints
like this, eitherin the KB itself and/orin the reasoningand
question-answeringprocedures,wouldbedesirable.

SUMMARY
Wehavepresentedamethodfor knowledgecapture,in which
knowledgeentryis viewedprimarily asa taskof component
assemblyratherthanaxiom-writing, andshown how it can
be implementedusing a graph-basedinterface,basedon a
novel techniqueof dialog using examples. Our trials sug-
gest that userscan both graspthe approachand construct
sophisticated,axiomaticrepresentations,despitehaving no
formal training in logic or AI. This is a potentially signifi-
cantachievementfor enablingsubjectmatterexpertsto build
KBs directly.
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